skip to main content


Search for: All records

Creators/Authors contains: "Ramana, C. V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 10, 2024
  2. Free, publicly-accessible full text available May 3, 2024
  3. The influence of oleylamine (OLA) concentration on the crystallography, morphology, surface chemistry, chemical bonding, and magnetic properties of solvothermal synthesized CoFe2O4 (CFO) nanoparticles (NPs) has been thoroughly investigated. Varying OLA concentration (0.01–0.1 M) resulted in the formation of cubic spinel-structured CoFe2O4 NPs in the size-range of 20–14 (±1) nm. The Fourier transform spectroscopic analyses performed confirmed the OLA binding to the CFO NPs. The thermogravimetric measurements revealed monolayer and multilayer coating of OLA on CFO NPs, which were further supported by the small-angle X-ray scattering measurements. The magnetic measurements indicated that the maximum saturation (MS) and remanent (Mr) magnetization decreased with increasing OLA concentration. The ratio of maximum dipolar field (Hdip), coercivity (HC), and exchanged bias field (Hex) (at 10 K) to the average crystallite size (Dxrd), i.e., (Hdip/Dxrd), (HC/Dxrd), and (Hex/Dxrd), increased linearly with OLA concentration, indicating that OLA concurrently controls the particle size and interparticle interaction among the CFO NPs. The results and analyses demonstrate that the OLA-mediated synthesis allowed for modification of the structural and magnetic properties of CFO NPs, which could readily find potential application in electronics and biomedicine. 
    more » « less